Acta Cryst. (1957). 10, 437

Unit-cell data of the lead niobate PbNb₂O₆. By R. S. Roth, National Bureau of Standards, Washington 25, D.C., U.S.A.

(Received 2 January 1957 and in revised form 17 January 1957)

The X-ray diffraction powder pattern of the ferroelectric form of a specimen of pure $PbNb_2O_6$, melted in a platinum crucible at 1350° C., can be indexed on the basis of an orthorhombic unit cell with $a=17\cdot63$, $b=17\cdot93$, $c=3\cdot868$ Å. The powder pattern shows no sign of diffraction peaks caused by a cell with the c axis equal to twice that used, as was originally suggested by Goodman (1953) and Francombe (1956) on the basis of single-crystal data. The pattern, as indexed in Table 1, obeys the

Table 1. X-ray powder diffraction data for high-temperature form of $PbNb_2O_6$

temperature form of 1 bin 5206							
(Cu $K\alpha_1$ radiation)							
hkl	d_o (Å)	I_o	hkl	d_o (Å)	I_o		
220	6.25	10	261	2.2838	5		
130	5.63	50	800	$2 \cdot 2030$	5		
310	5.56	20	280	$2 \cdot 1726$	20		
040	4.476	10	820	2.1396	25		
400	4.405	5	711	2.0961	5		
240	3.988	10	660	2.0942	10		
420	3.948	5	750	2.0615	5		
001	3.859	5	371	2.0073	10		
150	3.508	25	480	1.9976	15		
510	3.453	20	190	1.9803	10		
221	3.288	20	840	1.9766	10		
131	3.187	95	002	1.9340	60		
311	3.176	100	281	1.8952	10		
440	3.138	15	390	1.8875	20		
350	3.057	80	821	1.8725	5		
530	3.033	85	930	1.8621	10		
060	2.985	30	661	1.8433	20		
600	2.934	35	312	1.8277	5		
041	2.926	40	0,10,0	1.7944	5		
401	2.902	25	680	1.7823	5		
260	2.827	50	860	1.7755	10		
620	2.788	35	10,0,0	1.7631	25		
241	2.776	55	2,10,0	1.7590	20		
421	2.763	85	242	1.7406	15		
151	2.599	15	422	1.7360	10		
511	2.577	20	950	1.7211	5		
170	2.536	5	391	1.6972	5		
441	2.4383	5	152	1.6949	5		
351	2.4000	10	931	1.6786	5		
061	2.3641	10	442	1.6480	5		
370	2.3468	5	352	1.6361	20		
730	2.3195	5	532	1.6321	30		
.00							

extinction rule hkl with h+k=2n. This extinction rule fits only two possible space groups, D_2^6 -C222 and C_{2i}^{11} -Cmm2, and the compound would then have 10 molecules to the unit cell.

High-temperature X-ray patterns were made on the same specimen in an attempt to determine the symmetry of pure $\mathrm{PbNb_2O_6}$ above its reported Curie temperature of 570° C. At 700° C. it was found that this specimen had reverted almost completely to the low-temperature nonferroelectric form described by Francombe (1956), and this form remained stable at room temperature. However, a specimen of $\mathrm{PbNb_2O_6} + 2\mathrm{wt.}$ % ZrTiO₄ was apparently

completely stable in the 'high-temperature' form from room temperature to 700° C. This single phase solid solution at room temperature has a and b parameters very little different from the pure material but a c parameter of 3.873 Å. At 600° C. it was found that the close doublets formerly associated with orthorhombic symmetry were no longer present and the powder pattern could be completely indexed on the basis of a tetragonal unit cell with a=12.56, c=3.925 Å (Table 2). This pattern has only

Table 2. High-temperature X-ray diffraction data for ${\rm PbNb_2O_6+2~wt.\%~ZrTiO_4}$ at 600° C.

2 0	(Cu Ka, radiation)	
	,	a = 12.56 Å
d_o (Å)	I_o	hkl
6.26	5	020
5·61	45	120
4.436	5	220
3.928	5	001
3.482	30	320
3.326	15	021
3.215	100	121
3.140	15	040
3.046	100	140
2.955	60	33 0
2.945	70	221
2.806	65	240
2.793	100	131
2.605	35	231
2.4505	5	041
2.4049	5	141
2.3339	10	250
$2 \cdot 1562$	20	350
2.0961	15	060
1.9868	60	260
1.9624	80	002
1.8908	10	351
1 0515	15	∫ 022
1.8717		₹ 360
1.8489	10	061
1.7787	10	170/550
$1 \cdot 7729$	15	261
1.7609	25	132
1.7564	30	451
1.7113	10	232
1.6914	10	361
1.6504	60	142
1.6195	40	171/551
1.6101	50	242

one extinction rule of 0kl with k=2n. Three space groups are possible for this tetragonal symmetry, namely C_{4v}^2-P4bm , $D_{2d}^2-P\overline{4}b2$ and D_{4h}^5-P4/mbm . As the tetragonal structure is no longer ferroelectric it is probable that the material has a center of symmetry; if so, the space group would be D_{4h}^5-P4/mbm .

References

Francombe, M. H. (1956). Acta Cryst. 9, 683. GOODMAN, G. (1953). J. Amer. Ceram. Soc. 36, 368.